Inverse Category Frequency based supervised term weighting scheme for text categorization
نویسندگان
چکیده
Term weighting schemes often dominate the performance of many classifiers, such as kNN, centroid-based classifier and SVMs. The widely used term weighting scheme in text categorization, i.e., tf.idf, is originated from information retrieval (IR) field. The intuition behind idf for text categorization seems less reasonable than IR. In this paper, we introduce inverse category frequency (icf) into term weighting scheme and propose two novel approaches, i.e., tf.icf and icf-based supervised term weighting schemes. The tf.icf adopts icf to substitute idf factor and favors terms occurring in fewer categories, rather than fewer documents. And the icf-based approach combines icf and relevance frequency (rf) to weight terms in a supervised way. Our cross-classifier and cross-corpus experiments have shown that our proposed approaches are superior or comparable to six supervised term weighting schemes and three traditional schemes in terms of macro-F1 and micro-F1.
منابع مشابه
Inverse-Category-Frequency based Supervised Term Weighting Schemes for Text Categorization
Term weighting schemes often dominate the performance of many classifiers, such as kNN, centroid-based classifier and SVMs. The widely used term weighting scheme in text categorization, i.e., tf.idf, is originated from information retrieval (IR) field. The intuition behind idf for text categorization seems less reasonable than IR. In this paper, we introduce inverse category frequency (icf) int...
متن کاملA Novel Term Weighting Scheme Midf for Text Categorization
Text categorization is a task of automatically assigning documents to a set of predefined categories. Usually it involves a document representation method and term weighting scheme. This paper proposes a new term weighting scheme called Modified Inverse Document Frequency (MIDF) to improve the performance of text categorization. The document represented in MIDF is trained using the support vect...
متن کاملDoes a New Simple Gaussian Weighting Approach Perform Well in Text Categorization?
A new approach to the Text Categorization problem is here presented. It is called Gaussian Weighting and it is a supervised learning algorithm that, during the training phase, estimates two very simple and easily computable statistics which are: the Presence P, how much a term / is present in a category c\ the Expressiveness E, how much / is present outside c in the rest of the domain. Once the...
متن کاملProbabilistic Supervised Term Weighting for Binary Text Categorization
In text categorization, the class agnostic (unsupervised) tf× idf term weighting scheme has seen widespread usage. Recently proposed supervised term weighting methods including tf×rf and tf× δidf make use of term class distribution to improve the classification accuracy. However, they only account for the presence of terms in classes, ignoring the absence of key categorical terms, which may giv...
متن کاملProposing a New Term Weighting Scheme for Text Categorization
In text categorization, term weighting methods assign appropriate weights to the terms to improve the classification performance. In this study, we propose an effective term weighting scheme, i.e. tf.rf , and investigate several widely-used unsupervised and supervised term weighting methods on two popular data collections in combination with SVM and kNN algorithms. From our controlled experimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1012.2609 شماره
صفحات -
تاریخ انتشار 2010